Symmetric spaces with invariant locally Hessian structures
نویسندگان
چکیده
منابع مشابه
Hessian of the Riemannian Squared Distance Function on Connected Locally Symmetric Spaces with Applications
Many optimization problems formulated on Riemannian manifolds involve their intrinsic Riemannian squared distance function. A notorious and important example is the centroid computation of a given finite constellation of points. In such setups, the implementation of the fast intrinsic Newton optimization scheme requires the availability of the Hessian of this intrinsic function. Here, a method ...
متن کاملLocally Finitely Dimensional Shift - Invariant Spaces In
We prove that a locally nitely dimensional shift-invariant linear space of distributions must be a linear subspace of some shift-invariant space generated by nitely many compactly supported distributions. If the locally nitely dimensional shift-invariant space is a subspace of the HH older continuous space C or the fractional
متن کاملGeometric zeta-functions of locally symmetric spaces
The theory of geometric zeta functions for locally symmetric spaces as initialized by Selberg and continued by numerous mathematicians is generalized to the case of higher rank spaces. We show analytic continuation, describe the divisor in terms of tangential cohomology and in terms of group cohomology which generalizes the Patterson conjecture. We also extend the range of zeta functions in con...
متن کاملEquivariant Torsion of Locally Symmetric Spaces
In this paper we express the equivariant torsion of an Hermitian locally symmetric space in terms of geometrical data from closed geodesics and their Poincaré maps. For a Hermitian locally symmetric space Y and a holomorphic isometry g we define a zeta function Z(s) for <(s) 0, whose definition involves closed geodesics and their Poincaré maps. We show that Z extends meromorphically to the enti...
متن کاملMetric compacti cations of locally symmetric spaces
We introduce hyperbolic and asymptotic compactiications of metric spaces and apply them to locally symmetric spaces ?nX. We show that the reductive Borel{Serre compactiication ?nX RBS is hyperbolic and, as a corollary, get a result of Borel, and Kobayashi{Ochiai that the Baily{Borel compactiication ?nX BB is hyperbolic. We prove that the hyperbolic reduction of the toroidal compactiications ?nX...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1977
ISSN: 0025-5645
DOI: 10.2969/jmsj/02930581